Restoration logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Restoration logo
  • NEWS
  • PRODUCTS
    • New Products & Technologies
    • Submit Your Product
    • Interactive Product Spotlights
  • EDUCATION
    • KnowHow.
    • Podcasts
    • Trade Shows & Expos
    • Training & Certification
    • Webinars
    • Whitepapers
  • TOPICS
    • Water Damage
    • Fire & Smoke Damage
    • Mold
    • Contamination
    • Odor
    • Contents
    • Architecture
    • Catastrophe
    • Cleaning
  • BUSINESS
    • Managing Your Business
    • Insurance/Legal Matters
  • BUYER'S GUIDE
  • VIDEOS
    • Ask the Expert
    • TradeTalks
    • Video Channel
  • THE EXPERIENCE
    • Convention & Trade Show
    • R&R Special Issue
  • EMAG
    • eMagazine
    • Archive Issues
    • Contact
    • Advertise
  • SIGN UP
Water Damage Restoration

Drying a Flood House with Heat Technology

By Dan Bernazzani
February 3, 2014

The year 2013 saw many research projects conducted at HSG CodeBlue’s Structural Drying Laboratory in Springfield, Ohio. Potential faster drying times and the ability to salvage materials, once thought to be beyond recovery, underline the importance of research aimed at strengthening capacity to cope with drying flooded structures. One such study conducted occurred in November 2013 and involved drying a flood house with ΩDBK’s Drymatic system.

While it is well established to professional restorers that heat energy dries materials faster, assessing the benefit cannot be done without a clear understanding of the methods and tools available. Heat drying technology is advancing and challenging the ways our industry dries structures. Faster drying times ensures that flood victims can return to their normal lifestyles sooner.

The possibility that faster drying times could be achieved were proven last year when ETES units were studied at the laboratory. Reports from both this study and from building science, water damage restoration standards show the connection between faster drying times and heat energy. Heat drying is something of a catch-all term, referring to drying with temperatures of varying magnitude using different delivery systems and equipment.

To demonstrate the drying capability of the system, the structure was first flooded. On Sunday evening, November 17th, the structure (e.g., drywall, subfloors, hardwood, tile, carpeting, cabinets, contents, etc.) was saturated with ~1500 gallons of water using a ¾ inch garden hose, as performed in previous studies. Monday morning the house was flooded again from 4 a.m. to 8 a.m. Monday afternoon, approximately 16 hours after flooding the structure, carpet was extracted using four passes with an extractor. Three rooms were involved in the study, kitchen, dining and living room. Moisture content readings were collected and psychrometric readings were collected using a thermo hygrometer.

Following extraction, the heat drying unit was set up to dry the kitchen, dining and living rooms. The processed air from the system was further enhanced by two boost boxes connected to their mat system covering the hardwood floor in the kitchen. The mats accelerate diffusion to help expedite evaporation. The two boost boxes, with air movers attached, provided distribution of ambient air heated to oak hardwood and fir subfloor. The boxes provided temperature increases in the drying chamber with an average of 24.30 F.

Two additional boost boxes with air movers were set up to dry the carpeted living room. The carpet was disengaged from the tack strip and the units inserted under the carpet to dry the subfloor and textile.

The ambient temperature at 1 p.m. on November 18 was 81.50 F and 74.3% RH in the affected chamber, or 121 gpp. The ambient temperature increased to a high of 1090 F and 22.7% RH, or 85 gpp. The structural material reached dry goals within 48 hours. The outside temperature ranged from a low of 390 F to a high of 72.50 F during the study with relative humidity ranging from a high of 77.5% to a low of 17.3%. Outside air was used as make up air when the unit exhausted moisture laden air to the outside. Intake air was ducted into the unit through a flex duct inserted through the dining room window. Exhaust air was processed through the unit and exhausted through flex duct on the opposite side of the flood house through a window in the living room. Within limits defined by the user, the unitwill monitor and adjust the room’s environment, constantly optimizing and exchanging the moist air with warm, dry air in a controlled manner to ensure a faster, more efficient drying environment. No dehumidification was used in the drying chamber. One observation worth noting was cupping on the interior section of the kitchen hardwood measuring approximately 50 square feet.  A mat system, which was not used during the two-day drying process, was set up in the cupped area that corrected the abnormality within 2 hours. The cause was trapped moisture between the hardwood and the fir and the mat system was able to effectively use the warm dry air created by the intelligent heat drying system employed to dry underneath the boards.

It is generally accepted that employing direct-heat application increases the temperature of wet materials and expedites drying times. This was confirmed during the study with materials reaching temperatures of up to 1250 F reducing drying times from an average of 4.5 days to 2 days. Few studies have actually measured the time reductions when heat is employed in drying flooded structures. Shorter drying times provide savings to carriers and allow flood victims to return their normal lifestyle quicker.

In addition to the data mentioned above, this experimental set-up was equipped with a variety of sensors, including intake and exhaust temperatures and relative humidity levels, which provided data showing that relative humidity in the drying chamber was reduced from 63% to below 30% in less than 24 hours.

Implications from the study indicate that intelligent control of energy is crucial in ensuring drying goals are achieved while minimizing drying time and saving valuable materials. While direct-heat energy has been used for decades, the new technology available today can be employed to establish science-based drying systems that monitor surface and air temperatures while simultaneously determining moisture content and adjusting heat by increasing or decreasing energy as required. This technology can be employed with or without refrigerant or desiccant drying technology.

Since drying increases as a function of a material’s permeance or porosity, particular attention was paid to the length of drying time of various materials. Porous materials, such as carpet, dried in as little as 24 hours while subfloors and hardwood required up to 48 hours. The living room carpet dried within 24 hours with the exception of one area where the sofa restricted air flow. Once the sofa was moved, the area beneath it dried quickly as was the case with small isolated wall areas and isolated pockets of subfloor. Repositioning equipment for short intervals (

To conclude, the observations indicate that direct-heat drying technology provides shorter drying times than refrigerant or desiccant technology. 

KEYWORDS: drying techniques flood house restoration

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Dan Bernazzani PhD is Founder and President of Flood Safe Habitats. He is an indoor environmental professional whose credentials in the field date back to the 1980’s. His interests and areas of research are primarily in effectively restoring wet buildings and how mold and other microorganisms affect the built environment. The mission of the Flood Safe Habitats is to identify and inform volunteers and flood victims on the procedural standard of care that establishes and maintains the health and safety of workers and occupants in flooded habitats.

Recommended Content

JOIN TODAY
To unlock your recommendations.

Already have an account? Sign In

  • mold remediation

    Fighting Mold and Bacteria Damage

    Successful mold remediation can be multidisciplinary,...
    Mold Remediation
    By: Josh Woolen
  • certifications and licenses for restoration professionals

    Certifications and Licenses Every Restoration Company Needs

    Restoration companies need to make sure they have the...
    Restoration Training/Education
    By: Sharon Elzarat
  • a wall covered in moss and fungus

    Zero Tolerance for Toxic Molds: Essential Steps for Successful Remediation

    Understanding the importance of zero tolerance for toxic...
    Mold Remediation
    By: Michael A. Pinto CSP, SMS, CMP, RTPE, FLS, ERS and Kendra Seymour
You must login or register in order to post a comment.

Report Abusive Comment

Manage My Account
  • eNewsletter
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

More Videos

Popular Stories

Ask the Expert - Inside the Cost of Doing Business Survey: What It Means for Restoration Companies Today

Inside the Cost of Doing Business Survey: What It Means for Restoration Companies Today

Ask the Expert - Margin vs. Markup: The Costly Confusion in Restoration

Why Understanding Markup, Margin and Overhead is Critical for Restoration Success

mold spores

Mold and Mental Health: The Dual Crisis Facing Indoor Environmental Remediation Teams

2025 Technician Award winner - Congratulations, Kaylin Glaspie!

Events

January 20, 2026

INTRCONNECT

Dive into the latest trends, innovations, and best practices shaping the future of property insurance and restoration.

April 27, 2026

RIA Convention & Expo

This event empowers professionals through world-class education, powerful networking, and access to cutting-edge tools and services.

View All Submit An Event

Poll

Technology Innovations

Which emerging technology do you believe will have the biggest impact on restoration work in the next 5 years?
View Results Poll Archive

Products

The Cleaning, Restoration, Inspection, and Safety Glossary

The Cleaning, Restoration, Inspection, and Safety Glossary

The Cleaning, Restoration, Inspection, and Safety Glossary.

See More Products
Prepare for CATASTROPHE with R&R!

Related Articles

  • Bernazzani Structural Drying

    An Experiment Concerning the Effectiveness of a Structural Drying Approach

    See More
  • Understanding the Transfer of Energy in Restorative Drying

    See More
  • Advancing the Science of Structural Drying

    See More

Related Products

See More Products
  • red-guide-national-815.png

    National Red Guide - A Step by Step Guide to Disaster Recovery

  • Optimizing Social Media from a B2B Perspective

  • Water Damage - Part 1.pdf

    Water Damage - Mitigation & Restoration, Volume I - Management & Marketing

See More Products
×

Stay ahead of the curve with our eNewsletters.

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Submit a Press Release
  • SIGN UP TODAY
    • Create Account
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Reprints
    • Marketing Services
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing